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The question whether diffusion in the hard-square lattice gas is blocked in the 
thermodynamic limit is mapped to the problem whether percolation occurs in 
the time evolution of a cellular automaton. The final states of the cellular 
automaton are investigated for varying lattice sizes from 6x6 up to 
20,035x20,032. The results seem to indicate that there is a percolation 
threshold, i.e., a range of concentrations for which diffusion is blocked. 
However, since this cannot be true for the infinite system, as proven rigorously, 
it is concluded that finite-size effects persist for this system up to very large sizes. 
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1. I N T R O D U C T I O N  

Recent ly Ertel  et al. ~1 s tudied the diffusion in a ha rd - squa re  lat t ice gas by 
M o n t e  Car lo  s imulat ion.  They  found  tha t  at  sufficiently high concent ra -  
t ions the diffusion becomes  b locked  due to the ha rd  cores of the particles.  
However ,  the cri t ical  concen t ra t ion  above  which b lock ing  occurs depends  
on the size of the lat t ice and  increases when the system becomes  larger.  
Therefore,  one may  ask whether  in the t h e r m o d y n a m i c  l imit  of an infinite 
system the cri t ical  concen t ra t ion  app roaches  the m a x i m u m  value for the 
ha rd - squa re  lat t ice gas or  whether  it converges  to some fixed value c* 
be low this max imum.  The  second case would  imply  a dynamica l  phase  
t rans i t ion  in diffusion. 

Ertel  et  at. ~ re la ted  this  ques t ion  to a modif ied  pe rco la t ion  problem.  
W h e n  the co r r e spond ing  lat t ice is not  percola t ing,  the or ig inal  diffusive 
system is b locked.  They  p roved  tha t  at  any  concen t ra t ion  near  the maxi-  
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mum concentration the system percolates with probability 1 in the ther- 
modynamic limit, and consequently in this limit blocking should not occur. 
The percolation problem under study is related to bootstrap percolation on 
the square lattice for m = 3 .  ~2) The nonexistence of a finite percolation 
threshold in the thermodynamic limit is common to both types of percola- 
tion problems. With a slight modification, van Enter's proof ~3) for the case 
of bootstrap percolation is also applicable to our problem. C4~ However, the 
size dependence of the percolation probability for finite systems is very 
different for both percolation problems. This difference is the subject of the 
present paper. 

For our problem the asymptotic relation between the critical concen- 
tration and the size of the system is not known. Therefore, we study the 
percolation problem for square lattices numerically in this present paper. It 
turns out that it can be mapped to the time evolution of a two-dimensional 
cellular automaton. The relation to the original diffusion problem is 
described in Section 2. 

The linear dimensions L of the lattices were varied over more than 
three orders of magnitude from 6 to 20,032. Including lattices with side 
lengths up to 20,032 requires a considerable amount of computing power. 
The calculations could only be achieved using both multi-spin-coding ~5~ 
and the vector facilities of a CRAY X-MP/48 computer. The algorithm 
made it possible to obtain nearly 500 millions lattice sites swept per second. 
The details of the implementation are given in Section 3. 

For  a series of runs of the computer program at a fixed concentration 
we determine the fraction of samples for which percolation occurs. This 
quantity is called the percolation probability. We investigate how the concen- 
tration must be changed when the lattice size is varied so that the percola- 
tion probability remains fixed at a given value. In order to save computing 
time, a low percolation probability of 10 % for all lattices and a higher one 
of 50% for only the smaller lattices were selected. 

It turns out that the data found for the percolation probability of 10 % 
can be represented by a simple function. Plotting the data for the particle 
concentration versus 1/ln(L) results in a straight line for L>~ 10. The 
extrapolation of this line to the thermodynamic limit, however, does not 
yield an intercept of 0 for 1/ln(L) ~ 0 as is expected from ref. 1, but one 
obtains an intercept of 0.035 instead. Thus the results indicate a finite 
percolation threshold even for the infinite lattice. 

2. T H E  CELLULAR A U T O M A T O N  FOR D I F F U S I O N  

In the model discussed in ref. 1 the occupation of lattice sites is gover- 
ned by two rules: (i) a lattice site can be occupied by at most one particle, 
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(ii) the simultaneous occupation of nearest-neighbor pairs is not allowed. 
The second rule simulates a square-shaped hard core of the particles. As a 
consequence the maximum concentration is Cmax = 0.5. At this concentra- 
tion all particles are located at one of the two sublattices and the system 
looks like a checkerboard. 

The particles can only move to a nearest-neighbor site when the 
above rules are also fulfilled for the destination site. Thus, a jump to a 
nearest-neighbor site is only possible when not only the final site itself, 
but also three of its nearest-neighbor sites are empty. (One of the 
nearest-neighbor sites is occupied by the particle under consideration.) We 
call such particles movable. If particles happen to be aligned on a diagonal 
line of the lattice, it is only at the end of the line that they can escape from 
the diagonal, whereas within the chain they are kept fixed by the other par- 
ticles of just the same chain. Moreover, if such diagonal lines are arranged 
in such a way that they form closed rectangles and do not have free ends, 
these rectangles cannot alter their shape under the diffusion processes. 
Consequently, all particles inside such rectangular cages remain captured 
all the time. 

Blocking of diffusion occurs when it is possible at a certain instant of 
time to enclose all movable particles by such rectangular cages, since then 
the movement of the particles remains always restricted to their cages. 
Thus, it can be decided from an inspection of the actual configuration 
whether diffusion is blocked or not. 

We are interested in the determination of such cages. But before giving 
rules for detecting them, we will introduce a simplification to the problem 
which was also made in ref. 1. Consider a configuration for which diffusion 
is blocked. Since the blocking status will not be changed under diffusion, 
the particles may be rearranged within their cages by diffusion processes. 
We assume that it would be possible to shift all the particles to the 
predominantly occupied sublattice. In the following we only consider this 
sublattice. It is again a square lattice, but turned by 45 deg. The occupation 
of the lattice is characterized by the probability p of finding holes in this 
sublattice. It is related to the particle concentration c of the total lattice by 
p =  1 - 2 c .  

A movable particle as defined above is recognized in the selected sub- 
lattice by having two adjacent nearest-neighbor sites and additionally their 
common nearest-neighbor site all empty. This may be expressed differently 
by saying that a particle is movable when a square of four sites can be 
found in such a way that this particle is the only one in this square. 

In a first step for the detection of cages we remove all movable 
particles from the system. By taking away these particles, other ones, 
previously blocked by the removed particle, may become movable. In a 
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second sweep through the lattice they are also removed. This procedure is 
repeated until there has been no change in the configuration of the lattice 
after a sweep. 

The removing procedure can be understood as a rule for the time 
evolution of a cellular automaton on the square lattice. During a sweep 
those particles are taken away for which at least two adjacent 
nearest-neighbor sites and also the enclosed corner site are empty. Since 
such a configuration can occur for four different orientations, the state of 
a lattice site after a sweep not only depends on the occupation of its 
nearest-neighbor sites, but also on the four next-nearest-neighbor sites 
lying between the nearest-neighbor sites. 

There are two possible results: Either there were cages in the system, 
in which case their walls never become movable, and all particles belonging 
to the walls and outside of the cages are left over; or there were no cages 
at all, and the procedure does not come to an end until the lattice is 
completely empty. In this latter case the system has percolated. If there is 
no percolation, the diffusion is blocked. 

3. I M P L E M E N T A T I O N  OF THE LATTICE IN THE C O M P U T E R  

We consider a rectangular lattice composed of L2 lines of length L1. 
The lattice sites can be considered as a one-dimensional ordered set by 
enumerating at first the first line from left to right, then the second line, 
and so on, down to the last site in the bot tom line. Since we are using heli- 
cal boundary conditions, for a site I which is not located in the first or the 
last line, its left-hand and its right-hand neighbors are labeled by I -  1 and 
I +  1, whereas its upper and lower nearest neighbors are given by I - L 1  
and I+L1 and its next-nearest neighbors, which we also need in our 
analysis, are found as I - L I - 1 ,  I - L I + I ,  I + L I - 1 ,  and I + L I + I ,  
respectively. 

The last line of the lattice is considered to represent the upper 
neighbors of the first line, and the first line the lower neighbors of the last 
line. We do not need to consider how the relations among the labels of a 
lattice site and its neighbors must be modified, because they emerge quite 
naturally by our coding technique. 

We use multi-spin coding as described by Herrmann,  ~5~ i.e., the state 
of each lattice state is stored in just one bit of a computer word. An 
occupied lattice site is represented by 0, an empty one by 1. If W is the 
width of a computer  word, then the whole lattice is stored in an array of 
N = L 1 ,  L2/W words. (Of course L 1 ,  L2 must factorize with respect 
to W.) The states of the first N lattice sites are stored in their given order 
in the first bits of the array. The next portion of N lattice sites is stored in 
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the second bits of the array, etc. By this representation we achieve that all 
sites which neither belong to the first L1 + 1 nor to the last L1 + 1 words 
of the array are coded in the same bit positions as the neighbors which 
must be taken into account for the time evolution. We can get rid off this 
restriction by storing the last L1 + 1 words of the array in their given order 
just before the first element and adding the first L1 + 1 words also in the 
correct order to the end of the array. (The extended array now contains 
N + 2 ,  L1 + 2  elements.) To get things correctly matched, however, it is 
necessary that the words inserted at the beginning of the array are 
circular-shifted by one bit to the right, whereas the words pushed to the 
end are circular-shifted by one bit to the left. In this way for all sites of the 
lattice, represented in the original range of the array, the neighbors which 
determine the evolution appear at the same bit position in the array. 

This kind of storage is a little bit different from that suggested by 
Hermann (5~ and uses slightly more memory, but it has the advantage that 
all lattice sites can be treated by the same programming code without addi- 
tional programming effort for properly taking into account the boundary 
conditions. 

The logic of the program is as follows: In a first step we fill each lattice 
site with probability p with holes, denoted by a 1 bit. Then sweeps through 
the lattice are performed until changes in the configuration no longer 
occur. Then the program is stopped and it is stated whether the system had 
percolated or not. 

Since we succeeded in getting all the lattice sites, which must be con- 
sidered for changing the state of a certain site, to the same bit position, we 
can treat W ( W =  64 for the CRAY) lattice sites in parallel by a combina- 
tion of logical bit manipulations in Which all neighbors of the site are 
involved. 

The loop sweeping the lattice contains the following statements: 

SUM = 0  
DO 2 / = L 1  +2,  L1 + 1 + N  

LB(I) = LA(I) 
& .OR. (LA(I-L1).AND. L A ( I -  I ) .AND. L A ( I - L 1 -  1)) 
& .OR. ( L A ( I - L 1 ) . A N D .  LA(I+ t ) .AND.  L A ( I - L 1  + 1)) 
& .OR. (LA(I+L1) .AND.  LA(1-  1).AND. LA(I+ L I -  1)) 
& .OR. (LA(I+ L1).AND. LA{I+ t ) .AND,  LA(I+  Lt + 1)) 

SUM = SUM + POPCNT(LB(1)) 
2 CONTINUE 

Here some simplifications reducing the computational effort have been 
omitted for the sake of clarity. The array LA represents the lattice. The 
sweep concerns only the inner part of LA, not the extensions made for 
taking account of the boundary conditions. Each result is temporarily 
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stored in the array LB, so that LA is not affected during the sweep. After 
completion of the sweep, the contents of LB are transferred back to LA. 
The intrinsic CRAY function P O P C N T  counts the number of 1-bits. The 
variable SUM monitors the number of holes created in the system. If it has 
not changed with respect to the previous sweep, the system has reached 
its fixpoint and the program can be stopped. Whether the system has 
percolated can be easily checked from SUM. In the case of percolation the 
value of SUM is equal to L1 �9 L2. 

This loop and also the other parts of the program fully exploit the 
vectorization facilities of the CRAY computer. By this combination of 
vectorization and true parallel computing we achieve a testing rate of 
nearly 500 millions spins per second and per processor. 

The data were consistent with those of ref. 1 for smaller lattices 
obtained through a different program. 

4. R E S U L T S  A N D  D I S C U S S I O N  

The program was run for square lattices of varying sizes from 6 x 6 up 
to 20,035 x 20,032. For the larger lattices we chose slightly different lengths 
of the edges in order to facilitate memory access for the computer. For  each 
lattice size we varied the probability for holes p until the portion of sam- 
ples which percolated was 10% (50%) of the total number of samples. 
With the exception of the largest system with L = 20,032, where only ten 
(two) samples were used for a probability of 10% (50%) to percolate, the 
number of samples was at least 100 for each tested concentration for the 
large lattices and was increased to 10,000 for the small ones. In Table I the 
obtained probabilities p are listed for the two probabilities to percolate of 
10 % and 50 %, respectively. With the exception of the values for the 6 x 6 
and the 8 x 8 lattice, all the data for the probability to percolate of 10% 
are located on a straight line. The values for the probability to percolate of 
50 % do not follow a straight line. With increasing lattice size the curve for 
50% seems to approach the line for the 10% probability to percolate. 

With this finding one is tempted to extrapolate the line to the case of 
an infinite system. The intersection point with the p axis can be estimated 
to be at 0.035_+0.003, from which one might speculate that there is a 
percolation threshold even in the thermodynamic limit, a clear contra- 
diction to theory, u'3) which predicts intercept zero. 

A similar study has been conducted in connection with the two-spin 
facilitated kinetic Ising model for a square lattice C6'7) by Nakanishi and 
Takano. m) The problem of the ergodicity of this model is equivalent to 
bootstrap percolation with rn = 3. The rules of the percolation problem also 
define a cellular automaton, but with a rule for updating simpler than ours. 
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Table I. The Probabil i ty for Holes p As a Function of the System Size for 
Probabilit ies to Percolate of 1 0 %  and 50%,  Respectively 

Probability for holes 

System size 10% 5 0 %  

6 x 6 0.223 0.339 

8 x 8 0.208 0.299 

10 x 10 0.196 0.270 

12 x 12 0.186 0.249 

16 x 16 0.171 0.219 

20 x 20 0.160 0.201 

24 x 24 0.152 0.189 

30 x 30 0.145 0.176 

40 x 40 0.136 0.163 

48 x 48 0.131 0.155 

64 x 64 0.123 0.146 

88 x 88 0.119 - -  

131 x 128 0.113 0.131 

259 x 256 0.102 0.117 

451 x 448 0.098 - -  

963 x 960 0.091 

1987 x 1984 0.084 - -  

7363 x 7360 0.076 - -  

20035 x 20032 0.071 0.076 

For this model Nakanishi  and Takano found a linear relationship between 
1/1) and ln(L) in the range from L - -  70 to L = 1775. We tried to plot their 
data in the same way as ours. We also obtained a straight line which does 
not intersect the p axis at zero, but the intercept is so small that one would 
not infer a finite percolation threshold from it. In contrast to the findings 
for the present percolation problem, these numerical results confirm the 
theoretical predictions for the asymptotic behavior of the probability to 
percolate in the case of bootstrap percolation. ~3'9) 

On the other hand, an equally unexpected percolation threshold was 
found by Herrmann et  al. (1~ when studying the time evolution of an Ising 
ferromagnet at fixed energy represented by a Q2R cellular automaton.  Dif- 
ferent regions of the system show different periods in their time evolution. 
At a certain energy they observed a kinetic phase transition in that the 
number of particles having infinite time period grew suddenly when the 
energy was raised. Regarding their system as a lattice gas, the percolation 
threshold appears at a concentration of p ~ 0.03, which is about the same 
as ours. However, it should be noted that there was no significant size 
dependence observed. 
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The contradiction between the present results and those of ref. 1 may 
be resolved by the assumption that the present lattices are still too small. 
The findings of ref. 1 only apply to large systems. But it is not clear how 
large the system must be chosen for verifying the conclusions. From this 
work it can be stated that the lattices must be at least larger than 104 • 104. 

Without the multi-spin algorithm and a high-speed computer one would 
not have found this result. 
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